
© 2019 Percona1

Jobin Augustine

25 Interesting features of PostgreSQL 12
PostgreSQL 12

Senior Support Engineer - PostgreSQL
Percona

PostgreSQL Conference Europe, Oct 2019, Milan, Italy

© 2019 Percona2

PostgreSQL 12

● Partitioning improvements
● Indexing Improvements
● Standby improvements
● Optimizer Improvements
● Monitoring Improvements
● Security / Authentication improvements
● Server Configuration configuration
● General performance and optimization
● New features

Internal Infrastructure change for enabling the
storage engine is not covered in this talk

● New functionality
● Client library improvements
● deprecated / obsolete features
● tools - psql, pgbench, vacuumdb, pg_ctl,

pg_upgrade, pg_checksums, pg_rewind, pg_dump,
pg_dumpall,pg_restore

© 2019 Percona3

Partitioning

▪ Synthetic benchmark claims upto 76 times improvements for SELECT and
420 times for UPDATEs

select count(*) from TRADING WHERE trade_ts between '2019-02-02' and '2019-02-03';

● Partition Pruning Problems
● Slower performance than Unpartitioned table
● Performance slow down as the number of partitions

increases

Usual User Complaints

Planning time: 150.562 ms
Execution time: 5.663 ms

© 2019 Percona4

Partitioning - Select

PG11:
 Planning Time: 49.866 ms
 Execution Time: 0.093 ms

PG12:
 Planning Time: 0.276 ms
 Execution Time: 0.083 ms

© 2019 Percona5

Partitioning - not just select

PG11

PG12

© 2019 Percona6

Partitioning - Inserts

● Less locking
● Consistent performance with large number of partitions

© 2019 Percona7

Removing [Merge]Append nodes
which contain a single subpath

PG 11

PG 12

© 2019 Percona8

PG 11

PG 12

Removing [Merge]Append nodes
which contain a single subpath

© 2019 Percona9

Concurrent ATTACH PARTITION

● ATTACH and DETACH is not blocking SELECTSs and Vise Versa
○ No separate syntax for “CONCURRENTLY”

CREATE TABLE public.trading_p1963_04 PARTITION OF public.trading FOR VALUES FROM ('1963-04-01
00:00:00') TO ('1963-05-01 00:00:00');

CREATION OF NEW PARTITION TO TABLE

CREATE TABLE public.trading_p1963_04 (like public.trading_p1963_03);
ALTER TABLE trading ATTACH PARTITION trading_p1963_04 for values from ('1963-04-01 00:00:00') to
('1963-05-01 00:00:00');

© 2019 Percona10

Partition Tree

pg_partition_root() - top-most parent
pg_partition_ancestors()- ancestor relations

postgres=# select * from pg_partition_tree('ab');
 relid | parentrelid | isleaf | level
----------+-------------+--------+-------
 ab | | f | 0
 ab_a2 | ab | f | 1
 ab_a1 | ab | f | 1
 ab_a3 | ab | f | 1
 ab_a2_b1 | ab_a2 | t | 2
 ab_a2_b2 | ab_a2 | t | 2
 ab_a2_b3 | ab_a2 | t | 2
 ab_a1_b1 | ab_a1 | t | 2
 ab_a1_b2 | ab_a1 | t | 2
 ab_a1_b3 | ab_a1 | t | 2
 ab_a3_b1 | ab_a3 | t | 2
 ab_a3_b2 | ab_a3 | t | 2
 ab_a3_b3 | ab_a3 | t | 2

select * from pg_partition_root('ab_a3_b1');
select * from pg_partition_ancestors('ab_a3_b1');

© 2019 Percona11

Bulk Load (COPY) & INSERT

● Bulk load is done using Bulk insert
● Simple pg_dump test shows 31% improvement
● INSERTs takes less locking.

© 2019 Percona12

Partitioning - Foreign key references

postgres=# ALTER TABLE exceptions ADD CONSTRAINT fk_trading_exceptions FOREIGN
KEY (trade_id,trade_ts) REFERENCES trading (trade_id,trade_ts);
ERROR: cannot reference partitioned table "trading"

PG 11

PG 12
postgres=# ALTER TABLE exceptions ADD CONSTRAINT fk_trading_exceptions FOREIGN
KEY (trade_id,trade_ts) REFERENCES trading (trade_id,trade_ts);
ALTER TABLE

© 2019 Percona13

Other Partition Improvements

● Partition boundaries can be defined as expression
○ It is evaluated at the time of creation

© 2019 Percona14

General Performance Improvements

© 2019 Percona15

real and double precision values

● Output of floating-point numbers uses different algorithm
○ Database drivers and Applications like pg_dump

● Speed up
● Consistent across platforms.
● Caution:

1. Output format might change
2. Default value of extra_float_digits is changed and its

implications.

© 2019 Percona16

Minimal decompression - deTOAST

● No full decompression of TOAST is required.
● Speed up

○ PostGIS
○ JSON
○ LIKE ‘...%’

© 2019 Percona17

CTE Optimization

● Avoid Materialization of result set
● Better filtering, index usage, number of rows
● old behaviour WITH MATERIALIZED

© 2019 Percona18

VACUUM
postgres=# VACUUM (INDEX_CLEANUP FALSE,FREEZE TRUE) COMPANY;
VACUUM

postgres=# ALTER TABLE COMPANY SET (vacuum_index_cleanup = FALSE);
ALTER TABLE

postgres=# VACUUM (ANALYZE, SKIP_LOCKED) parted;

Skipping the index cleanup can speed up the vacuum process. which will be he handy if we do emergency VACUUM FREEZE

Skip those partitions of table which is having a non-compatible lock. instead of waiting

© 2019 Percona19

New Features

© 2019 Percona20

JSON - SQL 2016

● json_path function
● operators
● index support

● jsonb_path_exists(jsonb, jsonpath[, jsonb, bool]),
● jsonb_path_match(jsonb, jsonpath[, jsonb, bool]),
● jsonb_path_query(jsonb, jsonpath[, jsonb, bool]),
● jsonb_path_query_array(jsonb, jsonpath[, jsonb, bool]).
● jsonb_path_query_first(jsonb, jsonpath[, jsonb, bool]).

© 2019 Percona21

COPY FROM with WHERE

● Filtering of records are possible now

Syntax:
COPY table_name [(column_name [, ...])]

FROM { 'filename' | PROGRAM 'command' | STDIN }
[[WITH] (option [, ...])]
[WHERE condition]

© 2019 Percona22

Checksum - pg_checksums

● PG11:
○ Dump data, Initialize cluster, reload the data
○ (unofficial repo)

● PG12
○ Shutdown, enable checksum, startup

● Future expectation: Live changes

© 2019 Percona23

Generated Columns

column_name data_type GENERATED ALWAYS AS
(generation_expr) STORED

● Eliminates unnecessary triggers
● JSON/XML extraction, GIS data, full-text

CREATE TABLE candidate (
candidate_id INT PRIMARY KEY,
jobs JSONB,
since text GENERATED ALWAYS AS (

jsonb_path_query_first(jobs,'$.*.doj')->>0
) STORED

);

© 2019 Percona24

Collation - deterministic for case- or accent-insensitivity

CREATE COLLATION case_insensitive (
 provider = icu,
 locale =
'@colStrength=secondary',
 deterministic = false
);

“The default is true. A deterministic comparison considers strings that are not byte-wise equal to be unequal even if they are considered
logically equal by the comparison. PostgreSQL breaks ties using a byte-wise comparison. Comparison that is not deterministic can make the
collation be, say, case- or accent-insensitive.

CREATE COLLATION ignore_accents (
 provider = icu,
 locale = '@colStrength=primary;colCaseLevel=yes',
 deterministic = false
);

CREATE TABLE tab1 (name TEXT COLLATE case_insensitive);
INSERT INTO tab1 VALUES ('JOBIN');

postgres=# select * from tab1 where name =
'jobin';
 name

 JOBIN
(1 row)

CREATE TABLE tab2 (docs TEXT COLLATE ignore_accents);
INSERT INTO tab2 VALUES ('résumé');

postgres=# postgres=# select * from tab2 where
docs = 'resume';
 docs

 résumé
(1 row)

(1 row)

© 2019 Percona25

Standby database Improvements

© 2019 Percona26

Standby Database

● recovery.conf is dead

postgres=# select name,setting,unit,context from pg_settings where name like 'recovery%';

 name | setting | unit | context
-------------------+---------+------+------------
 primary_conninfo | | | postmaster
 primary_slot_name | | | postmaster
(2 rows)

© 2019 Percona27

Standby Database - backup tools

pg_basebackup
● creates standby.signal
● adds primary_conninfo into postgresql.auto.conf

© 2019 Percona28

Standby Database - Promote though connection

postgres=# select pg_is_in_recovery();
 pg_is_in_recovery

 t
(1 row)

postgres=# select pg_promote();
 pg_promote

 t
(1 row)

postgres=# select pg_is_in_recovery();
 pg_is_in_recovery

 f
(1 row)

© 2019 Percona29

Standby Database - trigger file

postgres=# alter system set promote_trigger_file='trigger.txt';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

postgres=# show promote_trigger_file;
 promote_trigger_file

 trigger.txt
(1 row)

● After the promotion standby.signal will be removed by PostgreSQL

LOG: promote trigger file found: trigger.txt
FATAL: terminating walreceiver process due to
administrator command
LOG: invalid record length at 1/47A5D198: wanted 24, got
0
LOG: redo done at 1/47A5D160
LOG: last completed transaction was at log
...
LOG: archive recovery complete
LOG: database system is ready to accept connections

© 2019 Percona30

Standby Database

● recovery.signal and standby.signal
○ if standby.signal is present, PostgreSQL will start the standby mode
○ else if recovery.signal is present, it will start the targeted recovery.
○ recovery proceeds upto latest recovery_target_timeline by default

● HA solutions need to be modified
● Backup tools needs modification.
● Primary connection info can be changed on the fly

○ ALTER SYSTEM SET../ pg_reload_conf();

© 2019 Percona31

PSQL Improvements

© 2019 Percona32

PSQL improvements

● CSV output
○ \pset format csv
○ --csv option

postgres=# \pset format
aligned asciidoc csv html latex latex-longtable
troff-ms unaligned wrapped

● Help with link - \h
● Tab completion of CREATE TABLE, CREATE TRIGGER, CREATE EVENT TRIGGER, ANALYZE, EXPLAIN, VACUUM,

ALTER TABLE, ALTER INDEX, ALTER DATABASE, and ALTER INDEX ALTER COLUMN

© 2019 Percona33

PSQL improvements

postgres=# \dP
 List of partitioned relations
 Schema | Name | Owner | Type | Table
--------+--------------+----------+-------------------+--------
-
 public | trading | postgres | partitioned table |
 public | trading_pkey | postgres | partitioned index | trading

postgres=# \d
 Schema | Name | Type | Owner
--------+----------------------+-------------------+----------
 public | trading | partitioned table | postgres
 public | trading_p1963_01 | table | postgres
 public | trading_p1963_02 | table | postgres
 public | trading_p1963_03 | table | postgres

© 2019 Percona34

Indexing Improvements

© 2019 Percona35

Index Improvements

B-Tree
● Multi column index is more space efficient
● Improved performance of Non-unique index (with duplicates)

○ Vacuum cleans up indexes with duplicate values
● Index updates are improved for less locking.

© 2019 Percona36

REINDEX CONCURRENTLY

● Blocking
● Workarounds till PG11
○ pg_idxmaint

● PG12: REINDEX <index> CONCURRENTLY
○ REINDEX <TABLE> CONCURRENTLY

postgres=# ALTER TABLE orders DROP CONSTRAINT orders_pkey, ADD CONSTRAINT orders_pkey PRIMARY KEY
USING INDEX orders_pkey_new;

ERROR: cannot drop constraint orders_pkey on table orders because other objects depend on it
DETAIL: constraint order_dtls_order_id_fkey on table order_dtls depends on index orders_pkey

© 2019 Percona37

GIST Index

● Just like B-Tree, GIST index support INCLUDE option
● Index only plans

© 2019 Percona38

Less WAL generation

“Instead of WAL-logging every modification during the build
separately, first build the index without any WAL-logging, and make a
separate pass through the index at the end, to write all pages to the
WAL. This significantly reduces the amount of WAL generated, and is
usually also faster, despite the extra I/O needed for the extra scan
through the index.WAL generated this way is also faster to replay.”

● GiST, GIN and SP-GiST index build and WAL replay improves

© 2019 Percona39

Optimizer Improvements

© 2019 Percona40

Better Statistics- Multi-column most-common-value (MCV)

CREATE STATISTICS func_deps_stat (dependencies) ON a, b, c FROM functional_dependencies;

● New View : pg_stats_ext
● New function : pg_mcv_list_items()

https://www.postgresql.org/docs/12/functions-statistics.html
https://www.postgresql.org/docs/12/view-pg-stats-ext.html

CREATE STATISTICS mcv_stat (mcv) ON a, b FROM stats;

https://www.postgresql.org/docs/12/functions-statistics.html
https://www.postgresql.org/docs/12/view-pg-stats-ext.html

© 2019 Percona41

Prepared statements - Generic vs Custom Plan

● PostgreSQL 12 introduces the capability to control

SET plan_cache_mode = 'force_custom_plan';
SET plan_cache_mode = 'force_generic_plan';
SET plan_cache_mode = 'auto';

© 2019 Percona42

JIT

● JIT is enabled by default.
● It kicks in more often and select clause

 Insert on trading (cost=0.00..2400000.00 rows=30000000 width=38) (actual
time=755568.562..755568.562 rows=0 loops=1)
 -> Subquery Scan on "*SELECT*" (cost=0.00..2400000.00 rows=30000000 width=38) (actual
time=4369.507..89923.141 rows=30000000 loops=1)
 -> Function Scan on generate_series g (cost=0.00..1650000.00 rows=30000000 width=36)
(actual time=2084.311..23046.387 rows=30000000 loops=1)
 Planning Time: 0.421 ms
 JIT:
 Functions: 5
 Options: Inlining true, Optimization true, Expressions true, Deforming true
 Timing: Generation 2.388 ms, Inlining 51.787 ms, Optimization 32.930 ms, Emission 24.354 ms,
Total 111.459 ms
 Execution Time: 756540.286 ms
(9 rows)

© 2019 Percona43

Caution JIT can be dangerous

 JIT:
 Functions: 5480
 Options: Inlining true, Optimization true, Expressions true, Deforming true
 Timing: Generation 486.285 ms, Inlining 117.954 ms, Optimization 24299.944 ms, Emission
15986.465 ms, Total 40890.648 ms
 Execution Time: 16141.694 ms
(924 rows)

Time: 16176.248 ms (00:16.176)

postgres=# set jit=off;

 Planning Time: 21.500 ms
 Execution Time: 2798.233 ms
(920 rows)

Time: 2833.774 ms (00:02.834)

© 2019 Percona44

Monitoring Improvements

© 2019 Percona45

log_transaction_sample_rate:
log_statement_sample_rate

Set the fraction of transactions whose statements are all logged,
in addition to statements logged for other reasons

● This is the option to capture fast queries
● Possible to adjust log_min_duration_statement
● Best for query optimization

© 2019 Percona46

Progress Monitoring

PostgreSQL 11:
VACCUM - pg_stat_progress_vacuum

PostgreSQL 12:
CLUSTER, VACUUM FULL - pg_stat_progress_cluster

 CREATE INDEX, REINDEX - pg_stat_progress_create_index

© 2019 Percona47

Security Improvements

© 2019 Percona48

Security - multi-factor authentication

● clientcert=verify-full
○ valid certificate
○ cn should match username

● can be added to existing authentication

hostssl database user IP-CIDR auth-method [auth-options]
hostssl all testuser X.X.X.X/XX password clientcert=verify-full

https://www.postgresql.org/docs/12/ssl-tcp.html#SSL-CLIENT-CERTIFICATES

© 2019 Percona49

Security

ssl_min_protocol_version: - Sets the minimum SSL/TLS protocol
version to use. Valid values are currently: TLSv1, TLSv1.1, TLSv1.2,
TLSv1.3
ssl_max_protocol_version:- The default is to allow any version.
useful for testing / troubleshooting

● Error will be raised for unsupported version
● Select a latest version of TSL if application / software supports it

© 2019 Percona50

Security - GSSAPI Authentication

“GSSAPI is an industry-standard protocol for secure
authentication defined in RFC 2743. PostgreSQL supports GSSAPI
for use as either an encrypted, authenticated layer, or for
authentication only. GSSAPI provides automatic authentication
(single sign-on) for systems that support it.”

© 2019 Percona51

Additional Reference
David Rowley - https://www.2ndquadrant.com/en/blog/postgresql-12-partitioning/

Hans-Jürgen Schönig -
https://www.cybertec-postgresql.com/en/tech-preview-improving-copy-and-bulkloading-in-postgresql-12/
Release Notes : https://www.postgresql.org/docs/release/12.0/
Multi-Factor authentication Mail Thread :
https://www.postgresql.org/message-id/CABUevEySUALk7Z9wn0baWswS3crfOazH_-nd0O0Pi7nS5SG7TA%40mail.g
mail.com

https://www.2ndquadrant.com/en/blog/postgresql-12-partitioning/
https://www.cybertec-postgresql.com/en/tech-preview-improving-copy-and-bulkloading-in-postgresql-12/
https://www.postgresql.org/docs/release/12.0/
https://www.postgresql.org/message-id/CABUevEySUALk7Z9wn0baWswS3crfOazH_-nd0O0Pi7nS5SG7TA%40mail.gmail.com
https://www.postgresql.org/message-id/CABUevEySUALk7Z9wn0baWswS3crfOazH_-nd0O0Pi7nS5SG7TA%40mail.gmail.com

© 2019 Percona52

Thank You

DATABASE
PERFORMANCE
MATTERS

Database Performance MattersDatabase Performance MattersDatabase Performance MattersDatabase Performance Matters
Champions of Unbiased
Open Source Database Solutions

